(本小题满分10分)选修4-4:坐标系与参数方程:
以直角坐标系的原点为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
、
两点,当
变化时,求
的最小值.
已知等差数列的首项
,公差
.且
分别是等比数列
的
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)设数列对任意自然数
均有
成立,求
的值.
已知A、B、C为的三个内角且向量
与
共线.
(Ⅰ)求角C的大小;
(Ⅱ)设角的对边分别是
,且满足
,试判断
的形状.
设.
(1)解不等式;
(2)若对任意实数,
恒成立,求实数a的取值范围.
已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线
的极坐标方程为
.
(1)求的直角坐标方程;
(2)直线(
为参数)与曲线C交于
,
两点,与
轴交于
,求
的值.
如图,已知均在⊙O上,且
为⊙O的直径.
(1)求的值;
(2)若⊙O的半径为,
与
交于点
,且
、
为弧
的三等分点,求
的长.