如图,在等腰Rt△ABC中,∠ACB=90o,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF。
(1)求证:△ADF≌△CEF;
(2)试证明△DFE是等腰直角三角形.
如图,△中,
,以边
为直径作
,交
于点
,过
作
于点
.
(1)求证:为
的切线;
(2)若,
,求
的长.
某校在周二至周四的课余时间分别开设了“国学”、“拉丁舞”、“机器人”三门选修课课程.
(1)若小莹任意选修其中两门课程,求选修两门课程中含有国学的概率?
(2)若小莹和小亮各自任意选修一门课程,求两人选修同一门课程的概率?
已知反比例函数的图象与一次函数
的图象交点为(2,2).
(1)求这两个函数的解析式;
(2)在下面的坐标纸中大致画出两个函数的图象,根据图象写出不等式的解集.
如图所示的粮仓可以看成圆柱体与圆锥体的组合体,已知其底面半径为6米,高为4米,下方圆柱高为3米.
(1)求该粮仓的容积;
(2)求上方圆锥的侧面积.(计算结果保留根号)
如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为,抛物线的解析式为;
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.连接PQ,是否存在实数t,使得PQ所在的直线经过点D,若存在,求出t的值;若不存在,请说明理由;
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?