(本题10分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).
(1)作出与△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使,并写出点A2的坐标.
如图,点 P是正方形 ABCD内的一点,连接 CP,将线段 CP绕点 C顺时针旋转90°,得到线段 CQ,连接 BP, DQ.
(1)如图1,求证:△ BCP≌△ DCQ;
(2)如图,延长 BP交直线 DQ于点 E.
①如图2,求证: BE⊥ DQ;
②如图3,若△ BCP为等边三角形,判断△ DEP的形状,并说明理由.
当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.
(1)直接写出书店销售该科幻小说时每天的销售量 y(本)与销售单价 x(元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠 a(0< a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求 a的值.
如图,△ ABC内接于⊙ O, AB是⊙ O的直径, AC= CE,连接 AE交 BC于点 D,延长 DC至 F点,使 CF= CD,连接 AF.
(1)判断直线 AF与⊙ O的位置关系,并说明理由.
(2)若 AC=10,tan∠ CAE= ,求 AE的长.
通辽市某中学为了了解学生"大课间"活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对"你最喜欢的运动项目"进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.
七年级学生最喜欢的运动项目人数统计表
项目 |
排球 |
篮球 |
踢毽 |
跳绳 |
其他 |
人数(人) |
7 |
8 |
14 |
|
6 |
请根据以上统计表(图)解答下列问题:
(1)本次调查共抽取了多少人?
(2)补全统计表和统计图.
(3)该校有学生1800人,学校想对"最喜欢踢毽子"的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.
有四张反面完全相同的纸牌 A、 B、 C、 D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.
(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是 .
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用 A、 B、 C、 D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.