游客
题文

(本题14分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.

(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图①,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) B ( 3 , 0 ) 两点,且与 y 轴交于点 C

(1)求抛物线的表达式;

(2)如图②,用宽为4个单位长度的直尺垂直于 x 轴,并沿 x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 P Q 两点(点 P 在点 Q 的左侧),连接 PQ ,在线段 PQ 上方抛物线上有一动点 D ,连接 DP DQ

(Ⅰ)若点 P 的横坐标为 1 2 ,求 ΔDPQ 面积的最大值,并求此时点 D 的坐标;

(Ⅱ)直尺在平移过程中, ΔDPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.

【发现】如图①,已知等边 ΔABC ,将直角三角板的 60 ° 角顶点 D 任意放在 BC 边上(点 D 不与点 B C 重合),使两边分别交线段 AB AC 于点 E F

(1)若 AB = 6 AE = 4 BD = 2 ,则 CF =   

(2)求证: ΔEBD ΔDCF

【思考】若将图①中的三角板的顶点 D BC 边上移动,保持三角板与边 AB AC 的两个交点 E F 都存在,连接 EF ,如图②所示,问:点 D 是否存在某一位置,使 ED 平分 BEF FD 平分 CFE ?若存在,求出 BD BC 的值;若不存在,请说明理由.

【探索】如图③,在等腰 ΔABC 中, AB = AC ,点 O BC 边的中点,将三角形透明纸板的一个顶点放在点 O 处(其中 MON = B ) ,使两条边分别交边 AB AC 于点 E F (点 E F 均不与 ΔABC 的顶点重合),连接 EF .设 B = α ,则 ΔAEF ΔABC 的周长之比为  (用含 α 的表达式表示).

如图,在以线段 AB 为直径的 O 上取一点 C ,连接 AC BC .将 ΔABC 沿 AB 翻折后得到 ΔABD

(1)试说明点 D O 上;

(2)在线段 AD 的延长线上取一点 E ,使 A B 2 = AC · AE .求证: BE O 的切线;

(3)在(2)的条件下,分别延长线段 AE CB 相交于点 F ,若 BC = 2 AC = 4 ,求线段 EF 的长.

学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离 y (米 ) 与时间 t (分钟)之间的函数关系如图所示.

(1)根据图象信息,当 t =   分钟时甲乙两人相遇,甲的速度为   / 分钟;

(2)求出线段 AB 所表示的函数表达式.

一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.

(1)若降价3元,则平均每天销售数量为  件;

(2)当每件商品降价多少元时,该商店每天销售利润为1200元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号