游客
题文

(本题14分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.

(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:

(1)此次共调查了多少名学生?

(2)将条形统计图补充完整;

(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用 A B C D E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.

先化简,再求值: ( y x - y - y 2 x 2 - y 2 ) ÷ x xy + y 2 ,其中 x = 3 + 1 y = 3 - 1

如图,抛物线 y = a x 2 + bx + 8 ( a 0 ) x 轴交于点 A ( - 2 , 0 ) 和点 B ( 8 , 0 ) ,与 y 轴交于点 C ,顶点为 D ,连接 AC BC BC 与抛物线的对称轴 l 交于点 E

(1)求抛物线的表达式;

(2)点 P 是第一象限内抛物线上的动点,连接 PB PC ,当 S ΔPBC = 3 5 S ΔABC 时,求点 P 的坐标;

(3)点 N 是对称轴 l 右侧抛物线上的动点,在射线 ED 上是否存在点 M ,使得以点 M N E 为顶点的三角形与 ΔOBC 相似?若存在,求点 M 的坐标;若不存在,请说明理由.

如图1,在 ΔABC 中, A = 90 ° AB = AC = 2 + 1 ,点 D E 分别在边 AB AC 上,且 AD = AE = 1 ,连接 DE .现将 ΔADE 绕点 A 顺时针方向旋转,旋转角为 α ( 0 ° < α < 360 ° ) ,如图2,连接 CE BD CD

(1)当 0 ° < α < 180 ° 时,求证: CE = BD

(2)如图3,当 α = 90 ° 时,延长 CE BD 于点 F ,求证: CF 垂直平分 BD

(3)在旋转过程中,求 ΔBCD 的面积的最大值,并写出此时旋转角 α 的度数.

因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量 y (桶 ) 与销售单价 x (元 ) 之间满足一次函数关系,其图象如图所示.

(1)求 y x 之间的函数表达式;

(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润 = 销售价 - 进价)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号