(本小题满分14分)已知Sn为数列{an}的前n项和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求数列{an}的通项an;
(2)若,求数列
的前n项和Tn;
(3)设的前n项和为An,是否存在最小正整数m,使得不等式An<m对任意正整数n恒成立?若存在,求出m的值;若不存在,说明理由。
已知椭圆的离心率为
,F为椭圆在x轴正半轴上的焦点,M、N两点在椭圆C上,且
,定点A(-4,0).
(1)求证:当时.,
;
(2)若当时有
,求椭圆C的方程;
(3)在(2)的条件下,当M、N两点在椭圆C运动时,当的值为6
时, 求出直线MN的方程.
设直线与椭圆
相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.
(1)证明:;
(2)若的面积取得最大值时的椭圆方程.
设动点到定点
的距离比它到
轴的距离大1,记点
的轨迹为曲线
.
(1)求点的轨迹方程;
(2)设圆过
,且圆心
在曲线
上,
是圆
在
轴上截得的弦,试探究当
运动时,弦长
是否为定值?为什么?
已知椭圆C:的左、右焦点为F1、F2,离心率为e. 直线
与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(Ⅰ)证明:;
(Ⅱ)若的周长为6;写出椭圆C的方程.
已知双曲线的离心率e=2,且
、
分别是双曲线虚轴的上、下端点
(Ⅰ)若双曲线过点(
,
),求双曲线的方程;
(Ⅱ)在(Ⅰ)的条件下,若、
是双曲线上不同的两点,且
,求直线
的方程