(本小题12分)已知分别为椭圆
:
(
)的左、右焦点, 且离心率为
,点
椭圆
上
(1)求椭圆的方程;
(2)是否存在斜率为的直线
与椭圆
交于不同的两点
,使直线
与
的倾斜角互补,且直线
是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由.
已知正项数列,其前
项和
满足
且
是
和
的等比中项..
(1)求数列的通项公式;
(2)设,求数列
的前99项和.
某单位招聘职工,经过几轮筛选,一轮从2000名报名者中筛选300名进入二轮笔试,接着按笔试成绩择优取100名进入第三轮面试,最后从面试对象中综合考察聘用50名.
(1)求参加笔试的竞聘者能被聘用的概率;
(2)用分层抽样的方式从最终聘用者中抽取10名进行进行调查问卷,其中有3名女职工,求被聘用的女职工的人数;
(3)单位从聘用的三男和二女中,选派两人参加某项培训,至少选派一名女同志参加的概率是多少?
已知向量,
.
(1)若,
,且
,求
;
(2)若,求
的取值范围.
设函数(其中
),
,已知它们在
处有相同的切线.
(1)求函数,
的解析式;
(2)求函数在
上的最小值;
(3)若对恒成立,求实数
的取值范围.
过椭圆的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.