(本小题满分12分)在中,内角
所对的边分别为
,已知
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.
设
.已知
.
(1)求 n的值;
(2)设 ,其中 ,求 的值.
设
,解不等式
.
在极坐标系中,已知两点
,直线l的方程为
.
(1)求 A, B两点间的距离;
(2)求点 B到直线 l的距离.
已知矩阵
(1)求 A 2;
(2)求矩阵 A的特征值.
定义首项为1且公比为正数的等比数列为"M-数列".
(1)已知等比数列{ a n} 满足: ,求证:数列{ a n}为"M-数列";
(2)已知数列{ b n}满足: ,其中 S n为数列{ b n}的前 n项和.
①求数列{ b n}的通项公式;
②设 m为正整数,若存在"M-数列"{ c n} ,对任意正整数 k ,当 k≤ m时,都有 成立,求 m的最大值.