设函数.(1)若函数在处有极值,求函数的最大值;(2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;(3)记,证明:不等式.
某车间小组共12人,需配置两种型号的机器,型机器需2人操作,每天耗电,能生产出价值4万元的产品;型机器需3人操作,每天耗电,能生产出价值3万元的产品现每天供应车间的电能不多于,问该车间小组应如何配置两种型号的机器,才能使每天的产值最大?最大值是多少?
已知不等式 (1)若对于所有的实数不等式恒成立,求的取值范围; (2)设不等式对于满足的一切的值都成立,求的取值范围.
已知向量,.令, (1)求的最小正周期; (2)当时,求的最小值以及取得最小值时的值.
(1)证明不等式: (2)为不全相等的正数,求证
已知函数. (Ⅰ)解不等式; (Ⅱ)若,且,求证:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号