如图,在四棱锥中,底面
是矩形,侧棱PD⊥底面
,
,
是
的中点,作
⊥
交
于点
.
(1)证明:∥平面
;
(2)证明:⊥平面
.
已知直线在矩阵
对应的变换作用下变为直线
.
(1)求实数,
的值;
(2)若点在直线
上,且
,求点
的坐标.
若数列满足
且
(其中
为常数),
是数列
的前
项和,数列
满足
.
(1)求的值;
(2)试判断是否为等差数列,并说明理由;
(3)求(用
表示).
已知函数,
为常数.
(1)若函数在
处的切线与
轴平行,求
的值;
(2)当时,试比较
与
的大小;
(3)若函数有两个零点
、
,试证明
.
已知椭圆的右准线
,离心率
,
,
是椭圆上的两动点,动点
满足
,(其中
为常数).
(1)求椭圆标准方程;
(2)当且直线
与
斜率均存在时,求
的最小值;
(3)若是线段
的中点,且
,问是否存在常数
和平面内两定点
,
,使得动点
满足
,若存在,求出
的值和定点
,
;若不存在,请说明理由.
图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔、
与桥面
垂直,通过测量得知
,
,当
为
中点时,
.
(1)求的长;
(2)试问在线段
的何处时,
达到最大.
|