(本小题满分14分)
已知向量,其中
,
,把其中
所满足的关系式记为
,且函数
为奇函数.
(1)求函数的表达式;
(2)已知数列的各项都是正数,
为数列
的前
项和,且对于任意
,都有“数列
的前
项和”等于
,求数列
的首项
和通项公式
;
(3)若数列满足
,求数列
的最小值.
己知a∈R,函数
(1)若a=1,求曲线在点(2,f (2))处的切线方程;
(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.
如图①,已知ABC是边长为l的等边三角形,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将
ABF沿AF折起,得到如图②所示的三棱锥A-BCF,其中BC=
.
(1)证明:DE//平面BCF;
(2)证明:CF平面ABF;
(3)当AD=时,求三棱锥F-DEG的体积
爸爸和亮亮用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.
(1)若爸爸恰好抽到了黑桃4.
①请把右面这种情况的树形图绘制完整;
②求亮亮抽出的牌的牌面数字比4大的概率.
(11)爸爸、亮亮约定,若爸爸抽到的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮赢,你认为这个游戏是否公平?如果公平,请说明理由,如果不公平,更换一张扑克牌使游戏公平.
在中,
.
(1)求的值;
(2)求的值.
已知数列{}的前n项和
(n为正整数)。
(1)令,求证数列{
}是等差数列,并求数列{
}的通项公式;
(2)令,
试比较
与
的大小,并予以证明.