(本小题满分14分)已知函数,其中常数
.
(Ⅰ)当时,求函数
的极值点;
(Ⅱ)证明:对任意恒成立;
(Ⅲ)对于函数图象上的不同两点
,如果在函数
图象上存在点
(其中
),使得在点M处的切线
∥AB,则称直线AB存在“伴侣切线”.特别地,当
,又称直线AB存在“中值伴侣切线”.
试问:当时,对于函数
图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.
(本小题满分12分)
如图,平面平面
,四边形
为矩形,
.
为
的中点,
.
(Ⅰ)求证:;
(Ⅱ)若二面角的余弦值为
时,求
的值.
(本小题满分12分)
某家电生产企业市场营销部对本厂生产的某种电器进行了市场调查,发现每台的销售利润与该电器的无故障使用时间(单位:年)有关.若
,则销售利润为
元;若
,则销售利润为
元;若
,则销售利润为
元,设每台该种电器的无故障使用时间
,
,
这三种情况发生的概率分别是
,又知
是方程
的两个根,且
.
(1)求的值;
(2)记表示销售两台该种电器的销售利润总和,求
的分布列及期望.
(本小题满分12分)
已知向量,
,函数
的图象与直线
的相邻两个交点之间的距离为
.
(Ⅰ)求函数在
上的单调递增区间;
(Ⅱ)将函数的图象向右平移
个单位,得到函数
的图象.若
在
上至少含有
个零点,求
的最小值.
设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆的离心率;
(2)若过三点的圆与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于
,求实数
的取值范围.
(本小题满分13分)已知函数(t∈R) .
(Ⅰ)若曲线在
处的切线与直线
平行,求实数
的值;
(Ⅱ)若对任意的,
恒成立,求实数
的取值范围.