游客
题文

(本小题满分14分)已知函数,其中常数.
(Ⅰ)当时,求函数的极值点;
(Ⅱ)证明:对任意恒成立;
(Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中),使得在点M处的切线∥AB,则称直线AB存在“伴侣切线”.特别地,当,又称直线AB存在“中值伴侣切线”.
试问:当时,对于函数图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

(本小题满分12分) 已知函数
(Ⅰ) 当时,求函数的最小值,
(Ⅱ)若对任意恒成立,试求实数的取值范围.

.(本小题满分12分) 在公差不为零的等差数列和等比数列中,已知
(Ⅰ)的公差的公比
(Ⅱ)设,求数列的前项和

(本小题满分12分) 四棱锥的底面与四个侧面的形状和大小如图所示。

(Ⅰ)写出四棱锥中四对线面垂直关系(不要求证明)
(Ⅱ)在四棱锥中,若的中点,求证:平面
(Ⅲ)求四棱锥值。

(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185)得到的频率分布直方图如图所示。

(Ⅰ)求第3、4、5组的频率;
(Ⅱ)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?

(本小题满分12分) 若函数的图象与直线相切,相邻切点之
间的距离为
(Ⅰ)求的值;
(Ⅱ)若点图象的对称中心,且,求点的坐标。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号