(本小题满分12分)甲、乙两名射击运动员参加某项有奖射击活动(射击次数相同).已知两名运动员射击的环数都稳定在7,8,9,10环,他们射击成绩的条形图如下:
(Ⅰ)求乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率.
(Ⅱ)甲、乙两名运动员现在要同时射击4次,如果甲、乙同时击中9环以上(包括9环)3次时,可获得总奖金两万元;如果甲、乙同时击中9环以上(包括9环)4次时,可获得总奖金五万元,其他结果不予奖励.求甲、乙两名运动员可获得总奖金数的期望值.
(注:频率可近似看作概率)
设V为全体平面向量构成的集合,若映射f:
V→R满足:
对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.
现给出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
分析映射①②③是否具有性质p.
如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、
SC和底面ABC,所成的角分别为α1、α2、α3,三侧面SBC,SAC,SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间情形的一个猜想.
在数列{an}中,a1=1,an+1=,n∈N+,求a2,a3,a4
并猜想数列的通项公式,并给出证明.
观察以下等式:
sin230°+cos260°+sin 30°·cos 60°=,
sin240°+cos270°+sin 40°·cos 70°=,
sin215°+cos245°+sin 15°·cos 45°=.
…
写出反映一般规律的等式,并给予证明.
设Sn=+…+
,写出S1,S2,S3,S4的值,归纳并猜想出结果,并给出证明.