游客
题文

我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与说理:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:如图所示,△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.试说明△ABC≌△A1B1C1的理由.
(请你将下列说理过程补充完整).
理由:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=90°,
因为BC=B1C1,∠C=∠C1,△BCD≌△B1C1D1,BD=B1D1.

(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.

科目 数学   题型 解答题   难度 较难
知识点: 中心对称图形
登录免费查看答案和解析
相关试题

计算:

如图,抛物线的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB =" 2OC=" 3.

(1)求a,b的值;
(2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=DQ,试求出y2关于x的函数关系式;
(3)在同一平面直角坐标系中,两条直线x = m,x = m+分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为?若能,求出m的值;若不能,请说明理由.

△ABC中,∠A=90°,点D在线段BC上(端点B除外),∠EDB = ∠C,BE⊥DE于点E,DE与AB相交于点F.
(1)当AB = AC时(如图1)
①∠EBF= ▲ °;
②小明在探究过程中发现,线段FD BE始终保持一种特殊的数量关系,请你猜想这个关系,并利用所学知识证明猜想的正确性;
(2)探究:

AB = kAC时(k>0,如图2),用含k的式子表示线段FDBE之间的数量关系,请直接写出结果.

如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D

(1)求证:AC平分∠BAD
(2)若CD3,AC=3,求⊙O的半径长.

如图,过点B(2,0)的直线l:y轴于点A,与反比例函数的图象交于点C(3,n).、

(1)求反比例函数的解析式;
(2)将△OBC绕点O逆时针方向旋转α角(α为锐角),
得到△OB′C′.当OC′AB时,求点C运动的路径长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号