游客
题文

已知抛物线抛物线y n=-(x-an2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线y1=-(x-a12+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.

(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(        );
依此类推第n条抛物线yn的顶点坐标为(           );
所有抛物线的顶点坐标满足的函数关系是                 
(3)探究下列结论:
若用An-1An表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出An-1An

科目 数学   题型 解答题   难度 较易
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在△ABC中,点D为BC边的中点,以点D为顶点的∠EDF的两边分别与边AB,AC交于点E,F,且∠EDF与∠A互补.

(1)如图1,若AB=AC,且∠A=90°,则线段DE与DF有何数量关系?请直接写出结论;
(2)如图2,若AB=AC,那么(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;
(3)如图3,若AB:AC=m:n,探索线段DE与DF的数量关系,并证明你的结论.

如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切, AD∥BC,连结OD,AC.

(1)求证:∠B=∠DCA;
(2)若tan B=,OD=, 求⊙O的半径长.

阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC中,AB=,AC=,BC=2三边的长分别为,求∠A的正切值.

小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.
(1)图2中与相等的角为的正切值为
(2)参考小华解决问题的方法,利用图4中的正方形网格(每个小正方形的边长均为1)解决问题:如图3,在△GHK中,HK=2,HG=,KG=,延长HK,求的度数.

如图,⊙O的直径CD与弦AB垂直相交于点E,且BC=1,AD=2,求⊙P的直径长.

下表给出了代数式的一些对应值:


……
-2
-1
0
1
2
3
……

……
5

c
2
-3
-10
……


(1)根据表格中的数据,确定的值;
(2)设,直接写出的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号