游客
题文

如图,在平面直角坐标系中,已知点坐标为(2,4),直线轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点点时停止移动.

(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为.
①用的代数式表示点的坐标;
②当为何值时,线段最短;
(3)当线段最短时,相应的抛物线上是否存在点,使△ 的面积与△的面积相等,若存在,请直接写出点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 20000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本 = 放养总费用 + 收购成本).

(1)设每天的放养费用是 a 万元,收购成本为 b 万元,求 a b 的值;

(2)设这批淡水鱼放养 t 天后的质量为 m ( kg ) ,销售单价为 y / kg .根据以往经验可知: m t 的函数关系为 m = 20000 ( 0 t 50 ) 100 t + 15000 ( 50 < t 100 ) y t 的函数关系如图所示.

①分别求出当 0 t 50 50 < t 100 时, y t 的函数关系式;

②设将这批淡水鱼放养 t 天后一次性出售所得利润为 W 元,求当 t 为何值时, W 最大?并求出最大值.(利润 = 销售总额 总成本)

已知正方形 ABCD 的对角线 AC BD 相交于点 O

(1)如图1, E G 分别是 OB OC 上的点, CE DG 的延长线相交于点 F .若 DF CE ,求证: OE = OG

(2)如图2, H BC 上的点,过点 H EH BC ,交线段 OB 于点 E ,连接 DH CE 于点 F ,交 OC 于点 G .若 OE = OG

①求证: ODG = OCE

②当 AB = 1 时,求 HC 的长.

如图, O Rt Δ ABC 的直角边 AC 上一点,以 OC 为半径的 O 与斜边 AB 相切于点 D ,交 OA 于点 E .已知 BC = 3 AC = 3

(1)求 AD 的长;

(2)求图中阴影部分的面积.

为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整) :

请根据所给信息,解答下列问题:

(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?

(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)

(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?

对于任意实数 a b ,定义关于“ ”的一种运算如下: a b = 2 a b .例如: 5 2 = 2 × 5 2 = 8 ( 3 ) 4 = 2 × ( 3 ) 4 = 10

(1)若 3 x = 2011 ,求 x 的值;

(2)若 x 3 < 5 ,求 x 的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号