如图,在平面直角坐标系中,已知点坐标为(2,4),直线
与
轴相交于点
,连结
,抛物线
从点
沿
方向平移,与直线
交于点
,顶点
到
点时停止移动.
(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为
.
①用的代数式表示点
的坐标;
②当为何值时,线段
最短;
(3)当线段最短时,相应的抛物线上是否存在点
,使△
的面积与△
的面积相等,若存在,请直接写出点
的坐标;若不存在,请说明理由.
湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本 放养总费用 收购成本).
(1)设每天的放养费用是 万元,收购成本为 万元,求 和 的值;
(2)设这批淡水鱼放养 天后的质量为 ,销售单价为 元 .根据以往经验可知: 与 的函数关系为 ; 与 的函数关系如图所示.
①分别求出当 和 时, 与 的函数关系式;
②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润 销售总额 总成本)
已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连接 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
如图, 为 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知 , .
(1)求 的长;
(2)求图中阴影部分的面积.
为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整)
请根据所给信息,解答下列问题:
(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?
(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?
对于任意实数 , ,定义关于“ ”的一种运算如下: .例如: , .
(1)若 ,求 的值;
(2)若 ,求 的取值范围.