游客
题文

已知,平面直角坐标系中,矩形OABC的边OC在x轴正半轴上,边OA在y轴正半轴上,B点的坐标为(4,3).将△AOC沿对角线AC所在的直线翻折,得到△AO’C,点O’为点O的对称点,CO’与AB相交于点E(如图①).

(1)试说明:EA=EC;
(2)求直线BO’的解析式;
(3)作直线OB(如图②),直线l平行于y轴,分别交x轴、直线OB、O’B于点P、M、N,设P点的横坐标为m (m>0)。y轴上是否存在点F,使得ΔFMN为等腰直角三角形?若存在,请求出此时m的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,天星山山脚下西端A处与东端B处相距 800 ( 1 + 3 ) 米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为 2 2 米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?

秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:

分 数 段

频数

频率

60≤x<70

9

a

70≤x<80

36

0.4

80≤x<90

27

b

90≤x≤100

c

0.2

请根据上述统计图表,解答下列问题:

(1)在表中,a  b c 

(2)补全频数直方图;

(3)根据以上选取的数据,计算七年级学生的平均成绩.

(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?

如图,在Rt△ABC中,∠ACB=90°,点DE分别在ABAC上,CEBC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF

(1)补充完成图形;

(2)若EFCD,求证:∠BDC=90°.

(1)计算: | 1 - 3 | + 3 tan 30 - ( 3 - 5 ) 0 - - 1 3 - 1

(2)解不等式组 2 x + 1 > 0 2 - x 2 x + 3 3

如图1所示,已知:点A(﹣2,﹣1)在双曲线 C: y = a x 上,直线l1y=﹣x+2,直线l2l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为BP是曲线C上第一象限内异于B的一动点,过Px轴平行线分别交l1l2MN两点.

(1)求双曲线C及直线l2的解析式;

(2)求证: P F 2 P F 1 MN 4

(3)如图2所示,△PF1F2的内切圆与F1F2PF1PF2三边分别相切于点QRS,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点Ax1y1),Bx2y2),则AB两点间的距离公式为 AB = x 1 - x 2 2 + y 1 - y 2 2 .

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号