游客
题文

如图1,在平面直角坐标系中,点M在x轴的正半轴上,⊙M交x轴 于A、B两点,交y轴C、D于两点,且C为弧AE的中点,AE交y轴于点G,若A点的坐标为(-2,0),CD=8

(1)求⊙M的半径 
(2)求AE的长
(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M圆周上运动时,的比值是否发生变化,若不变,求出比值:若不变,请说明变化规律

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为  
(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.

(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.

①求抛物线的解析式;
②要使高为3米的船通过,则其宽度须不超过多少米?
(2)如图2,若把桥看做是圆的一部分.

①求圆的半径;
②要使高为3米的船通过,则其宽度须不超过多少米?

如图,矩形ABCD为一本书,AB=12π,AD=2,当把书卷起时大致如图所示的半圆状(每张纸都是以O为圆心的同心圆的弧),如第一张纸AB对应为弧AB,最后一张纸CD对应为弧CD(CD为半圆),

(1)连结OB,求钝角∠AOB
(2)如果该书共有100张纸,求第40张纸对应的弧超出半圆部分的长.

△ABC内接于⊙O中,AD平分∠BAC交⊙O于D.

(1)如图1,连接BD,CD,求证:BD=CD
(2)如图2,若BC是⊙O直径,AB=8,AC=6,求BD长
(3)如图,若∠ABC的平分线与AD交于点E,求证:BD=DE

如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连结并延长交的延长线于点

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号