如图,EF∥AD,∠1=∠2, ∠BAC=70°,将求∠AGD的过程填空完整。
解:∵EF∥AD
∴∠2=()
又∵∠1=∠2
∴∠1=∠3()
∴AB∥()
∵∠BAC+=180°()
∵∠BAC=70°∴∠AGD=。
如图所示,已知BD平分∠ABC,∠C=62°,∠ABD=30°,∠ADC=118°,
求∠A的度数。
已知实数x,y满足y=+
—28,求
如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.
(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.
已知△ABC是等边三角形.
(1)将△ABC绕点A逆时针旋转角(0°<<180°),得到△ADE,BD和EC所在直线相交于点O.
①如图,当a =20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;
②当△ABC旋转到如图b所在位置时,求∠BOE的度数;
(2)如图,c在AB和AC上分别截取点B′和C′,使AB=AB′,AC=
AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<
<180°),得到△ADE
BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.