某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.
已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
计算:.
如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+x +c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1)。已知AM=BC。
(1)求二次函数的解析式;
(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;
(3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N。
①若直线l⊥BD,如图1所示,试求的值;
②若l为满足条件的任意直线。如图2所示,①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。
如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G。
(1)求证:AF⊥BE;
(2)试探究线段AO、BO、GO的长度之间的数量关系;
(3)若GO:CF=4:5,试确定E点的位置。
某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择。
方案一:每克种子价格为4元,无论购买多少均不打折;
方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的,则超过3千克的部分的种子价格打7折。
(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额.y(元)之间的函数关系式;
(2)若你去购买一定量的种子,你会怎样选择方案?说明理由。