(本小题满分12分)设上的两点,已知
,
,若
且椭圆的离心率
短轴长为2,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
已知双曲线x2-3y2=3的右焦点为F,右准线为l,以F为左焦点,以l为左准线的椭圆C的中心为A,又A点关于直线y=2x的对称点A’恰好在双曲线的左准线上,求椭圆的方程.
过双曲线的右焦点F作倾斜角为的直线交双曲线于A、B两点,求线段AB的中点C到焦点F的距离.
如图所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=,曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)过C能否作一条直线与曲线段DE相交,且所
得弦以C为中点,如果能,求该弦所在的直线
的方程;若不能,说明理由.
已知H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足
⑴当点P在y轴上移动时,求点M的轨迹C;
⑵过点T(-1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x0,0),使得△ABE是等边三角形,求x0的值.
如图,椭圆上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F2是椭圆的左焦点,C是椭圆上的任一点,证明:
∠F1CF2≤ ;
(3)过F1且与AB垂直的直线交椭圆于P、Q,若△PF2Q的面积是20,求此时椭圆的方程.