如图,椭圆
上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F2是椭圆的左焦点,C是椭圆上的任一点,证明:
∠F1CF2≤ ;
(3)过F1且与AB垂直的直线交椭圆于P、Q,若△PF2Q的面积是20,求此时椭圆的方程.
(本题满分12分)
已知函数f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率是3,求a,b的值;
(2)若f(x)为R上的单调递增函数,求a的取值范围.
(本小题满分12分)
已知数列
的首项为2,点
在函数
的图像上
(Ⅰ)求数列
的通项公式;
(Ⅱ)设数列
的前
项之和为
,求
的值.
(本题14分)
设函数
.
(1)求函数
的单调递增区间;
(2)若关于
的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
(本题12分)
已知函
有极值,且曲线
处的切线斜率为3.
(1)求函数
的解析式;
(2)求
在[-4,1]上的最大值和最小值。
(3)函数
有三个零点,求实数
的取值范围.
(本题12分)
在
中,角
所对的边为
已知
.
(1)求
的值;
(2)若
的面积为
,且
,求
的值.