小明在学习反比例函数的图象时,他的老师要求同学们根据“探索一次函数y1=x+1的图象”的基本步骤,在纸上逐步探索函数y2=的图象,并且在黑板上写出4个点的坐标:A(
,
),B(1,2),C(1,
),D(﹣2,﹣1).
(1)在A、B、C、D四个点中,任取一个点,这个点既在直线y1=x+1又在双曲线y2=上的概率是多少?
(2)小明从A、B、C、D四个点中任取两个点进行描点,求两点都落在双曲线y2=上的概率.
(1)解方程:
(2)解不等式组:.
化简:
(1)
(2).
如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△NPO是否相似,并说明理由;
(2)求过点A的反比例函数解析式;
(3)若(2)中求出的反比例函数的图象与EF交于B点,请探索:直线AB与OM是否垂直,并说明理由.
(本题10分)我校八年级举行英语风采演讲比赛,派两位老师去超市购买笔记本作为奖品.据了解,该超市的甲、乙两种笔记本的价格分别是10元和6元,他们准备购买这两种笔记本共30本.
(1)若这两位老师计划用220元购买奖品,则能买这两种笔记本各多少本?
(2) 若他们根据演讲比赛的设奖情况,决定所购买的甲种笔记本的数量不多于乙种笔记本数量的,但又多于乙种笔记本数量的
,若设他们买甲种笔记本x本,买这两种笔记本共花费y元.
①求出y(元)关于x(本)的函数关系式;
②问购买这两种笔记本各多少时,花费最少,此时的花费是多少元?