游客
题文

已知函数f(x)=x+,且f(1)=2.
(1)求
(2)判断的奇偶性;
(3)函数上是增函数还是减函数?并证明.

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

·新课标理)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

·新课标理)平面直角坐标系xOy中,过椭圆M:右焦点的直线于A,B两点,P为AB的中点,且OP的斜率为.
(1)求M的方程;
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值

·江西理)如图,椭圆经过点P(1. ),离心率e=,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得?若存在,求λ的值;若不存在,说明理由.

已知A、B、C是椭圆W:上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号