某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1050元,问第二周每个旅游纪念品的销售价格为多少元?
已知某数的平方根是和
,
的立方根是
,求
的平方根.
扬州万家福商场将进货价80元的某品牌童装,以120元的销售价售出,平均每天能售出20件.则单件利润为120-80=40元,每天的盈利为40×20=800元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.(盈利=单件利润×销售量)
(1)若每件童装的销售价下降2元,则:
①降价后,每件童装的销售价为______________元;
②降价后,每件童装的利润为______________元;
③降价后,商场平均每天的销售量为__________________件.
(2)若设每件童装的销售价下降a元,试用含a的代数式填空:
①降价后,每件童装的销售价为______________元;
②降价后,每件童装的利润为______________元;
③降价后,商场平均每天的销售量为__________________件.
(3)如果商场要想平均每天销售这种童装盈利1200元.商场经理甲说“在原售价每件120元的基础上再下降20元,可以完成任务”,商场经理乙说“不用降那么多,在原售价每件120元的基础上再下降10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
新规定这样一种运算法则:a△b=,如2△3=
-2×3=4-6=-2;
利用运算法则解决下列问题:
(1)1△2= ,(-1)△[1△(-1)] = .
(2)若2△x=3,求x的值.
(3)若(-2)△x=-2+x,求x的值.
已知数a,b,c的大小关系如图所示:
(1)①abc____0;②a+b-c____0;③bc-a_____0;
(2)化简.
已知,求
的值.