已知,其中
,
.
(1)求的周期和单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为,
,
,求边长
和
的值(
).
若函数在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数
的取值范围.
设关于
的不等式,
的解集是
,
函数
的定义域为
。若“
或
”为真,“
且
”为假,求
的取值范围。
在复平面内, 是原点,向量
对应的复数是
,
=2+i。
(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数
和
;
(Ⅱ)复数,
对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。
已知命题“椭圆
的焦点在
轴上”;
命题在
上单调递增,若“
”为假,求
的取值范围.
如图,已知直线(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求与
的值;
(Ⅱ)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.