如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,M是BD的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求证:ME∥平面ABC;
(2)试问在棱DC上是否存在点N,使NM⊥平面BDE? 若存在,确定点N的位置;若不存在,请说明理由.
:已知点列满足:
,其中
,又已知
,
.
(1)若,求
的表达式;
(2)已知点B,记
,且
成立,试求a的取值范围;
(3)设(2)中的数列的前n项和为
,试求:
。
:某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润
(单位:万元,
),记第
天的利润率
,例如
(1)求的值;
(2)求第天的利润率
;
(3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.
:如图,在平面直角坐标系xoy中,抛物线y=x2-
x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当t∈(0,)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
:如图,四边形ABCD是正方形,PB^平面ABCD,MA∥PB,PB=AB=2MA.
(Ⅰ)证明:AC∥平面PMD;
(Ⅱ)求直线BD与平面PCD所成的角的大小;
(Ⅲ)求平面PMD与平面ABCD所成的二面角(锐角)的正切值.
:设锐角三角形的内角
的对边分别为
,且
.
(Ⅰ)求的大小;(Ⅱ)求
的取值范围.