已知椭圆经过点
,离心率为
.
(1)求椭圆的方程;
(2)直线与椭圆
交于
两点,点
是椭圆
的右顶点.直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
已知函数,
,
,
,
,
,将它们分别写在六张卡片上,放在一个盒子中,
(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得的
函数是奇函数的概率;
(Ⅱ)从盒子中任取两张卡片,求其中至少一张上为奇函数的概率
已知函数.
(Ⅰ)当时,求
的最小值;
(Ⅱ)若函数在区间
上为单调函数,求实数
的取值范围;
(Ⅲ)当时,不等式
恒成立,求实数
的取值范围.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
取值范围.
已知四棱锥中,底面
为直角梯形,
.
,
,
为正三角形,且面
面
,异面直线
与
所成的角的余弦值为
,
为
的中点.
(Ⅰ)求证:面
;
(Ⅱ)求点到平面
的距离;
(Ⅲ)求平面与平面
相交所成的锐二面角的大小.
已知数列满足:
.
(Ⅰ)求;
(Ⅱ)设,求数列
的通项公式;
(Ⅲ)设,不等式
恒成立时,求实数
的取值范围.