如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(–1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.
(1)求该二次函数的解析式及点C的坐标;
(2)当P,Q运动t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状并求说明理由.
(3)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由
解不等式组并求它的所有的非负整数解.
计算:.
如图,网格中都是边长为1的小正方形,点A、B在格点上,请在《答题卡》上所提供的网格区域内,充分利用格线或格点,完成如下操作:
(1)以MN为对称轴,作AB的对称线段CD;
(2)作线段AE,要求:①AE⊥AB;②AE=AB,并用构造全等直角三角形的方法,说明所作的线段AE符合要求.
一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.
请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.
填空:把下面的推理过程补充完整,并在括号内注明理由. 如图,点B、D在线段AE上,BC∥EF,AD=BE,BC="EF."
求证:(1)∠C=∠F;
(2)AC//DF