提高过江大桥的车辆通行能力可改善整个城市的交通状态。在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/小时)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(1)当时,求函数
的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
(本题10分)已知圆.若圆
的切线在x轴和y轴上截距相等,求切线的方程;
(本小题满分14分)定长为3的线段两端点
、
分别在
轴、
轴上滑动,
在线段
上,且
.
(1)求点的轨迹
的方程;
(2)设过且不垂直于坐标轴的动直线
交轨迹
于
、
两点,问:线段
上是否存在一点
,使得以
、
为邻边的平行四边形为菱形?作出判断并证明.
(本小题满分13分)已知椭圆两焦点分别为
、
,
是椭圆在第一象限弧上的一点,并满足
,过点
作倾斜角互补的两条直线
、
分别交椭圆于A、B两点.
(1)求点坐标;
(2)证明:直线的斜率为定值,并求出该定值.
(本小题满分12分)已知椭圆的左、右顶点分别为
、
,曲线
是以椭圆中心为顶点,
为焦点的抛物线.
(1)求曲线的方程;
(2)直线与曲线
交于不同的两点
、
.当
时,求直线
的倾斜角
的取值范围.
(本小题满分12分)已知实数满足方程
.
(1)求的最大值和最小值;
(2)求的最大值与最小值.