(本小题满分14分)定长为3的线段 两端点
、
分别在
轴、
轴上滑动,
在线段
上,且
.
(1)求点的轨迹
的方程;
(2)设过且不垂直于坐标轴的动直线
交轨迹
于
、
两点,问:线段
上是否存在一点
,使得以
、
为邻边的平行四边形为菱形?作出判断并证明.
设
是数列
(
)的前
项和,
,且
,
,
.
(I)证明:数列
是常数数列;
(II)试找出一个奇数
,使以18为首项,7为公比的等比数列
中的所有项都是数列
中的项,并指出
是数列
中的第几项.
已知双曲线
的右焦点为
,过点
的动直线与双曲线相交于
两点,点
的坐标是
.
(I)证明
,
为常数;
(II)若动点
满足
(其中
为坐标原点),求点
的轨迹方程.
如图,已知直二面角
,
,
,
,
,
,
和平面
所成的角为
.
(I)证明
;
(II)求二面角
的大小.
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有
,参加过计算机培训的有
,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
已知函数
.求:
(I)函数
的最小正周期;
(II)函数
的单调增区间.