设 S n 是数列 a n ( n ∈ N + )的前 n 项和, a 1 = a ,且 S n 2 = 3 n 2 a n + S n - 1 2 , a n ≠ 0 , n = 2 , 3 , 4 , . . . . (I)证明:数列 a n + 2 - a n ( n ≥ 2 ) 是常数数列; (II)试找出一个奇数 a ,使以18为首项,7为公比的等比数列 b n ( n ∈ N * ) 中的所有项都是数列 a n 中的项,并指出 b n 是数列 a n 中的第几项.
已知函数 (Ⅰ)若是从三个数中任取的一个数,是从四个数中任取的一个数,求为偶函数的概率; (Ⅱ)若,是从区间任取的一个数,求方程有实根的概率.
已知为第三象限角,. (1)化简(2)若,求的值
已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1. (1)求直线的方程及的值; (2)若(其中是的导函数),求函数的最大值; (3)当时,求证:.
已知函数满足:(), (1)用反证法证明:不可能为正比例函数; (2)若,求的值,并用数学归纳法证明:对任意的,均有:.
设且
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号