(本小题满分12分)已知关于的一元二次函数
(1)若分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足函数
在区间[
上是增函数的概率;
(2)设点(,
)是区域
内的随机点,求函数
上是增函数的概率.
已知数列和
中,数列
的前
项和记为
. 若点
在函数
的图象上,点
在函数
的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前
项和
已知定义域为的函数
是奇函数.
(1)求的值;
(2)若对任意的,不等式
恒成立,求
的取值范围
在△ABC中,角A、B、C所对的边分别是a、b、c,tanA=,cosB=
.
(Ⅰ)求角C;
(Ⅱ)若△ABC的最短边长是,求最长边的长.
(Ⅰ)已知||=4,|
|=3,(2
-3
)·(2
+
)=61,求
与
的夹角θ;
(Ⅱ)设=(2,5),
=(3,1),
=(6,3),在
上是否存在点M,使
,若存在,求出点M的坐标,若不存在,请说明理由.
已知函数的定义域为
,值域为
.试求函数
(
)的最小正周期和最值.