(本小题10分)如图,已知抛物线:
,过焦点
斜率大于零的直线
交抛物线于
、
两点,且与其准线交于点
.
(Ⅰ)若线段的长为
,求直线
的方程;
(Ⅱ)在上是否存在点
,使得对任意直线
,直线
,
,
的斜率始终成等差数列,若存在求点
的坐标;若不存在,请说明理由.
如图,在四棱锥中,
为平行四边形,且
平面
,
,
为
的中点,
.
(Ⅰ) 求证://
;
(Ⅱ)若, 求二面角
的余弦值.
气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃) |
t![]() |
22℃<t![]() |
28℃<t![]() |
![]() |
天数 |
6 |
12 |
![]() |
![]() |
由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
某水果商根据多年的销售经验,六月份的日最高气温t (单位:℃)对西瓜的销售影响如下表:
日最高气温t (单位:℃) |
t![]() |
22℃<t![]() |
28℃<t![]() |
![]() |
日销售额![]() |
2 |
5 |
6 |
8 |
(Ⅰ) 求,
的值;
(Ⅱ) 若视频率为概率,求六月份西瓜日销售额的期望和方差;
(Ⅲ) 在日最高气温不高于32℃时,求日销售额不低于5千元的概率.
已知各项为正数的等差数列满足
,
,且
(
).
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前n项和
.
已知为奇函数,且当
时,
.当
时,
的最大值为
,最小值为
,求
的值.
已知是定义在
上的奇函数,且
在
上是减函数,解不等式
.