游客
题文

,满足.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设三内角所对边分别为,求上的值域.

科目 数学   题型 解答题   难度 中等
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+++ +Sn的大小.

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.

求证:BD⊥AA1
若四边形是菱形,且,求四棱柱的体积.

已知向量设函数.
的最小正周期与单调递增区间;
中,分别是角的对边,若的面积为,求的值.

已知函数.
(I)求函数的单调区间;
(Ⅱ)当时,函数恒成立,求实数的取值范围;
(Ⅲ)设正实数满足,求证:

在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.

(Ⅰ)求证:直线ER与GR′的交点P在椭圆+=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号