(本小题满分12分)某公司举办一次募捐爱心演出,有1000人参加,每人一张门票,每张100元。在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动。第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数(
),若满足
,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不中特等奖奖金。
(Ⅰ)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(Ⅱ)设特等奖奖金为a元,求小李参加此次活动收益的期望,若该公司在此次活动中收益的期望值是至少获利70000元,求a的最大值。
已知正整数列{an}的前n项和为Sn,且对任意的正整数n满足2=an+1.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Bn.
已知数列an的前n项和公式为Sn=n2-23n-2(n∈N*).
(1)写出该数列的第3项;
(2)判断74是否在该数列中;
(3)确定Sn何时取最小值,最小值是多少?
.数列{an}的前n项和Sn=100n-n2(n∈N*).
(1){an}是什么数列?
(2)设bn=|an|,求数列{bn}的前n项和.
某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.
两种大小不同的钢板可按下表截成A,B,C三种规格成品:
某建筑工地需A,B,C三种规格的成品分别为15,18,27块,问怎样截这两种钢板,可
得所需三种规格成品,且所用钢板张数最小.