福州市出租车因车型不同,收费标准也不同。A型车的起步价10元(3km以内收费10元),3km 后每千米收费1.2元;B 型车的起步价8元(3km以内收费8元),3km 后每千米 收费1.4元.
(1)请分别计算乘坐A型车与B型车行走xkm(x>3)各需付多少元(列代数式);
(2)若张老师要乘出租车到20km处的省体育中心,从节省费用的角度出发,张老师应乘坐哪种型号的车?
(本题满分12分,其中第(1)小题5分,第(2)小题4分,第(3)小题3分)
已知抛物线过点A(-1,0),B(4,0),P(5,3),抛物线与y轴交于点C.
(1)求二次函数的解析式;
(2)求tan∠APC的值;
(3)在抛物线上求一点Q,过Q点作x轴的垂线,垂足为H,使得∠BQH=∠APC.
(本题满分12分,其中第(1)小题5分,第(2)小题7分)
已知:如图,在矩形ABCD中,点E、F分别在边AD、BC上,EF垂直平分AC,垂足为O,联结AF、CE.
(1)求证:四边形AFCE是菱形;
(2)点P在线段AC上,满足,求证:CD∥PE.
(本题满分10分,其中第(1)4分、第(2)小题6分)
某公司销售一种商品,这种商品一天的销量y(件)与售价x(元/件)之间存在着如图所示的一次函数关系,且40≤x≤70.
(1)根据图像,求y与x之间的函数解析式;
(2)设该销售公司一天销售这种商品的收入为w元.
①试用含x的代数式表示w;
②如果该商品的成本价为每件30元,试问当售价定为每件多少元时,该销售公司一天销售该商品的盈利为1万元?(收入=销量×售价)
(本题满分10分,其中每小题各5分)
在Rt△ABC中,∠ABC=90°,∠BAC=60°,D为BC中点,连结AD,过点D作DE⊥AD,交AB的延长线于E.
(1)若AD=,求△ABC的面积;
(2)求的值.
解方程: