某中学组织全校3200名学生进行了“法律法规”相关知识竞赛.为了解本次知识竞赛的成绩情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图.
分组 |
频数 |
频率 |
50.5~60.5 |
m |
0.05 |
60.5~70.5 |
a |
b |
70.5~80.5 |
80 |
n |
80.5~90.5 |
104 |
0.26 |
90.5~100.5 |
148 |
0.37 |
合计 |
|
1 |
请根据以上提供的信息,解答下列问题:
(1)则a= ,b= ,并补全频数分布直方图;
(2)上述学生成绩的中位数落在哪一组范围内?
(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校3 200名学生中约有多少名获奖?
先化简,再求值:,其中
.
解方程:
(9分计算:
如图,是反比例函数和
(k1>k2)在第一象限的图象,直线
∥
轴,并分别交两条曲线于
、
两点。
(1)若点的纵坐标是
,则可得点
的纵坐标是.
(2)若,则
与
之间的关系是.
(本小题满分14分)根据下列要求,解答相关问题.
(1)请补全以下求不等式的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数;并在下面的坐标系中(见图1)画出二次函数
的图象(只画出图象即可).
②求得界点,标示所需:当y=0时,求得方程的解为;并用锯齿线标示出函数
图象中y≥0的部分.
③借助图象,写出解集:由所标示图象,可得不等式的解集为.
(2)利用(1)中求不等式解集的步骤,求不等式的解集.
①构造函数,画出图象:
②求得界点,标示所需:
③借助图像,写出解集:
(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式的解集.