本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(1)数列各项均不为0,前n项和为
,
,
的前n项和为
,且
,若数列
共3项,求所有满足要求的数列;
(2)求证:是满足已知条件的一个数列;
(3)请构造出一个满足已知条件的无穷数列,并使得
;若还能构造其他符合要求的数列,请一并写出(不超过四个)。
已知函数,其中
是常数.
(1)当时,求曲线
在点
处的切线方程;
(2)若在定义域内是单调递增函数,求
的取值范围.
设数列的前
项和为
,点
在直线
上.
(1)求数列的通项公式;
(2)在与
之间插入
个数,使这
个数组成公差为
的等差数列,求数列
的前
项和
.
如图,菱形的边长为4,
,
.将菱形
沿
对角线折起,得到三棱锥
,点
是棱
的中点,
.
(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC
(3)求三棱锥B﹣DOM的体积.
已知直线
(1)若直线的斜率等于2,求实数
的值;
(2)若直线分别与x轴、y轴的正半轴交于A、B两点,O是坐标原点,求△AOB面积的最大值及此时直线的方程.
(本小题满分14分)已知函数,
(a为实数).
(1) 当a=5时,求函数在
处的切线方程;
(2) 求在区间[t,t+2](t >0)上的最小值;
(Ⅲ) 若存在两不等实根,使方程
成立,求实数a的取值范围.