(本小题满分10分)已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,//
(1)证明:
(2)设二面角的平面角为
,求
;
(3)M为AD的中点,在DE上是否存在一点P,使得MP//平面BCE?若存在,求出DP的长;若不存在,请说明理由。
若函数在区间
上的最大值为
,求实数
的值.
在△ABC中,已知B(-2,0)、C(2,0),AD⊥BC于点D,△ABC的垂心为H,且=
.
(1)求点H(x,y)的轨迹G的方程;
(2)已知P(-1,0)、Q(1,0),M是曲线G上的一点,那么,
,
能成等差数列吗?若能,求出M点的坐标;若不能,请说明理由.
如下图,双曲线-
=1(b∈N*)的两个焦点为F1、F2,P为双曲线上一点,|OP|<5,|PF1|、|F1F2|、|PF2|成等差数列,求此双曲线方程.
求以椭圆+
=1的顶点为焦点,且一条渐近线的倾斜角为
的双曲线方程.
已知椭圆+
=1,过点P(2,1)引一条弦,使它在这点被平分,求此弦所在的直线方程.