列方程解应用题:七年级某班同学清明节去扫墓,步行的同学先从学校出发1h,然后骑车的同学从学校出发沿同一路线前行,30min后与步行的同学同时到达.已知骑车的同学比步行的同学每小时多行10km,求骑车的同学和步行的同学的速度.
如图所示,在□ABCD中,对角线AC、BD交于点O,直线EF经过点O交BC于F、交AD于E,且AF⊥BC.求证:四边形AFCE是矩形.
如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
如图,矩形ABCD中,M是AD的中点.
(1)求证:△ABM≌△DCM.
(2)请你探索,当矩形ABCD的一组邻边满足何种数量关系时,BM⊥CM成立?并说明理由.
如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.
求证:DF=DC.
如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.