已知关于的方程
.
(1)求证:当时,方程总有两个不相等的实数根;
(2)若二次函数的图象与x轴交于A,B两点(A在B的左侧),与
轴交于点C,且tan∠OAC=4,求该二次函数的解析式;
(3)已知点P(m,0)是x轴上的一个动点,过点P作垂直于x轴的直线交(2)中的二次函数图象于点M,交一次函数的图象于点N.若只有当
时,点M位于点N的下方,求一次函数
的解析式.
(本题8分)2012年5月13日是母亲节,某校开展了形式多样的感恩教育活动.该校从每班随机抽取一部分学生进行调查,并将调查结果绘制成如下的扇形统计图和频数分布直方图.
根据上图信息,解答下列问题:
(1)求出本次被调查的学生人数,并补全频数分布直方图;
(2)若这所学校共有学生2400人,已知被调查的学生中,知道母亲生日的女生人数是男生人数的2倍,请根据上述调查结果估计该校知道母亲生日的女生有多少人?
(本题6分)解不等式组.
(本题6分)先化简,再求值:其中
,
.
如图所示,在平面直角坐标系中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在
轴的负半轴和
轴的正半轴上,抛物线
经过点A、B,且18
+
=0.
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
① 移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价
(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元.
请比较哪种方案的最大利润更高?并说明理由.