已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.
在数学兴趣小组活动中,小亮进行数学探究活动.
(1) 是边长为3的等边三角形, 是边 上的一点,且 ,小亮以 为边作等边三角形 ,如图1.求 的长;
(2) 是边长为3的等边三角形, 是边 上的一个动点,小亮以 为边作等边三角形 ,如图2.在点 从点 到点 的运动过程中,求点 所经过的路径长;
(3) 是边长为3的等边三角形, 是高 上的一个动点,小亮以 为边作等边三角形 ,如图3.在点 从点 到点 的运动过程中,求点 所经过的路径长;
(4)正方形 的边长为3, 是边 上的一个动点,在点 从点 到点 的运动过程中,小亮以 为顶点作正方形 ,其中点 、 都在直线 上,如图4.当点 到达点 时,点 、 、 与点 重合.则点 所经过的路径长为 ,点 所经过的路径长为 .
如图,抛物线 与 轴交于点 、 ,与 轴交于点 ,已知 .
(1)求 的值和直线 对应的函数表达式;
(2) 为抛物线上一点,若 ,请直接写出点 的坐标;
(3) 为抛物线上一点,若 ,求点 的坐标.
我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿 摆成如图1所示.已知 ,鱼竿尾端 离岸边 ,即 .海面与地面 平行且相距 ,即 .
(1)如图1,在无鱼上钩时,海面上方的鱼线 与海面 的夹角 ,海面下方的鱼线 与海面 垂直,鱼竿 与地面 的夹角 .求点 到岸边 的距离;
(2)如图2,在有鱼上钩时,鱼竿与地面的夹角 ,此时鱼线被拉直,鱼线 ,点 恰好位于海面.求点 到岸边 的距离.
(参考数据: , , , , ,
如图, 中, ,以点 为圆心, 为半径作 , 为 上一点,连接 、 , , 平分 .
(1)求证: 是 的切线;
(2)延长 、 相交于点 ,若 ,求 的值.
为了做好防疫工作,学校准备购进一批消毒液.已知2瓶 型消毒液和3瓶 型消毒液共需41元,5瓶 型消毒液和2瓶 型消毒液共需53元.
(1)这两种消毒液的单价各是多少元?
(2)学校准备购进这两种消毒液共90瓶,且 型消毒液的数量不少于 型消毒液数量的 ,请设计出最省钱的购买方案,并求出最少费用.