问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?
初步思考:设不在同一条直线上的三点、
、
确定的圆为⊙
.
(1)当、
在线段
的同侧时,
如图①,若点在⊙
上,此时有
,理由是 ;
如图②,若点在⊙
内,此时有
;
如图③,若点在⊙
外,此时有
.(填“
”、“
”或“
”);
由上面的探究,请直接写出、
、
、
四点在同一个圆上的条件: .
类比学习:(2)仿照上面的探究思路,请探究:当、
在线段
的异侧时的情形.
如图④,此时有 ,如图⑤,此时有 ,
如图⑥,此时有 .
由上面的探究,请用文字语言直接写出、
、
、
四点在同一个圆上的条件:
.
拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,
是⊙
的直径,点
在⊙
上,求作:
.
作法:①连接,
;
②在 上任取异于
、
的一点
,连接
,
;
③与
相交于
点,延长
、
,交于
点;
④连接、
并延长,交直径
于
;
⑤连接、
并延长,交⊙
于N.连接
. 则
.
请按上述作法在图④中作图,并说明的理由.(提示:可以利用(2)中的结论)
已知等腰△ABC中,AB=AC,D是BC的中点,将三角板中的90°角的顶点绕D点在△ABC内旋转,角的两边分别与AB、AC交于E、F,且点E、F不与A、B、C三点重合.如果∠A=90°求证:DE=DF
如果DF//AB,则结论:“四边形AEDF为直角梯形”是否正确,若正确,请证明;若不正确,请画出草图举反例
已知:如图,正比例函数的图象与反比例函数
的图象交于点
试确定上述正比例函数和反比例函数的表达式;
根据图象直接回答,在第一象限内,当
取何值时,反比例函数的值大于正比例函数的值?
是反比例函数图象上的一动点,其中
,过点
作直线
轴,交
轴于点
;过点
作直线
轴交
轴于点
,交直线
于点
.当四边形
的面积为6时,请判断线段
与
的大小关系,并说明理由.
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.判断DE与⊙O的位置关系,并证明你的结论
若DE的长为2
,cosB=,求⊙O的半径.
使得函数值为零的自变量的值称为函数的零点.例如,对于函数,令
,可得
,我们就说
是函数
的零点.请根据零点的定义解决下列问题:已知函数
(k为常数).当k=2时,求该函数的零点;
两幢垂直于地面的大楼相距110米,从甲楼顶部看乙楼顶部的仰角为30°,已知甲楼高35米根据题意,在图中画出示意图;
求乙楼的高度为多少米?