定义:若各项为正实数的数列满足,则称数列为“算术平方根递推数列”.已知数列满足且点在二次函数的图像上. (1)试判断数列是否为算术平方根递推数列?若是,请说明你的理由;(2)记,求证:数列是等比数列,并求出通项公式;(3)从数列中依据某种顺序自左至右取出其中的项 ,把这些项重新组成一个新数列:.若数列是首项为,公比为的无穷等比数列,且数列各项的和为,求正整数的值.
已知函数, (I)求函数的递增区间; (II)求函数在区间上的值域。
已知, (I)判断的奇偶性; (II)时,判断在上的单调性并给出证明。
(本题满分12分)已知, 是平面上的一组基底,若+λ,, (I)若与共线,求的值; (II)若、是夹角为的单位向量,当时,求的最大值。
已知向量,, (I)若∥,求的值; (II)若,求的值。
已知函数(其中0≤≤)的图象与y轴交于点, (I)求的解析式; (II)如图,设P是图象上的最高点,M、N是图象与x轴的交点,求与的夹角的余弦值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号