已知椭圆的方程为
,点
的坐标满足
过点
的直线
与椭圆交于
、
两点,点
为线段
的中点,求:
(1)点的轨迹方程;
(2)点的轨迹与坐标轴的交点的个数.
已知中心在原点的双曲线的一个焦点是
,一条渐近线的方程是
.
(1)求双曲线的方程;(2)若以
为斜率的直线
与双曲线
相交于两个不同的点
,且线段
的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围.
已知数列为公差不为
的等差数列,
为前
项和,
和
的等差中项为
,且
.令
数列
的前
项和为
.
(1)求及
;
(2)是否存在正整数成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.
如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD^底面ABCD,PD=DC,点E是PC的中点,作EF^PB交PB于点F,
(1)求证:PA//平面EDB;
(2)求证:PB^平面EFD;
(3)求二面角C-PB-D的大小.
高三某班有两个数学课外兴趣小组,第一组有名男生,
名女生,第二组有
名男生,
名女生.现在班主任老师要从第一组选出
人,从第二组选出
人,请他们在班会上和全班同学分享学习心得.
(Ⅰ)求选出的人均是男生的概率;
(Ⅱ)求选出的人中有男生也有女生的概率.
已知函数f(x)=cos 2x+2sin x·sin.
(1)求f(x)的最小正周期,最大值以及取得最大值时x的集合;
(2)若A是锐角三角形△ABC的内角,f(A)=0,b=5,a=7,求△ABC的面积.