如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
已知反比例函数图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数
的图象上另一点C(n,—
),
(1)求反比例函数的解析式以及直线y=ax+b的解析式;
(2)求反比例函数的值大于一次函数的值时所对应的x的取值范围。
(3)自己连接AC、和BC 并求△ABC的面积
列方程解应用题
某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: 方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。
如图,△ABC中,∠ACB=90度,AC=7,BC=24,CD⊥AB于D。
(1)求AB的长;
(2)求CD的长。
如图,△ACB和△ECD都是等腰直角三角形,ACB=
ECD=90°.D为AB边上一点.
求证:(1)△ACE△BCD;
(2)AD+DB
=DE
.
先化简代数式,然后选取一个使原式有意义的
的值代入求值.