已知正项数列,,且(1)求证:是等差数列,并求的通项公式;(2)数列满足,若,仍是中的项,求在区间中的所有可能值之和;(3)若将上述递推关系改为:,且数列中任意项,试求满足要求的实数的取值范围
已知数列的各项都是正数,且满足: (1)求; (2)证明:
是否存在实数使得关于n的等式 成立?若存在,求出的值并证明等式,若不存在,请说明理由.
有4男3女共7位同学从前到后排成一列. (1)有多少种不同方法? (2)甲不站在排头,有多少种不同方法? (3)三名女生互不相邻,有多少种不同方法? (4)3名女生在队伍中按从前到后从高到矮顺序排列,有多少种不同方法? (5)3名女生必须站在一起,有多少种不同方法?
已知为复数,为实数,求.
已知一个圆与正方形的周长都为1,证明:圆的面积比正方形的面积大.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号