家政服务公司根据用户满意程度将本公司家政服务员分为两类,其中A类服务员12名,B类服务员名
(1)若采用分层抽样的方法随机抽取20名家政服务员参加技术培训,抽取到B类服务员的人数是16, 求的值
(2)某客户来公司聘请2名家政服务员,但是由于公司人员安排已经接近饱和,只有3名A类家政服务员和2名B类家政服务员可供选择
①请列出该客户的所有可能选择的情况
②求该客户最终聘请的家政服务员中既有A类又有B类的概率
已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为
(Ⅰ)写出点P的直角坐标及曲线C的普通方程;
(Ⅱ)若为C上的动点,求
中点
到直线
(t为参数)距离的最小值
如图所示,为圆
的切线,
为切点,
,
的角平分线与
和圆
分别交于点
和
(1)求证(2)求
的值
已知
(1)若存在使得
≥0成立,求
的范围
(2)求证:当>1时,在(1)的条件下,
成立
已知椭圆中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆的方程;
(2)设直线经过点
(0,1),且与椭圆交于
两点,若
,求直线
的方程.
已知梯形中
,
,
,
、
分别是
、
上的点,
,
.沿
将梯形
翻折,使平面
⊥平面
(如图).
是
的中点.
(1)当时,求证:
⊥
;
(2)当变化时,求三棱锥
体积的最大值.