已知数集,其中
,且
,若对
(
),
与
两数中至少有一个属于
,则称数集
具有性质
(1)分别判断数集与数集
是否具有性质
,说明理由
(2)已知数集具有性质
,判断数列
是否为等差数列,若是等差数列,请证明;若不是,请说明理由
在棱长为1的正方体中,
分别是
的中点,
在棱
上,且
,H为
的中点,应用空间向量方法求解下列问题.
(1)求证:;
(2)求EF与所成的角的余弦;
(3)求FH的长.
如图:在空间四边形ABCD中,AB,BC,BD两两垂直,且AB=BC=2,E是AC的中点,异面直线AD和BE所成的角为,求BD的长度.(15分)
设向量并确定
的关系,使
轴垂直.
已知,求
的值.
设,椭圆方程为
,抛物线方程为
.如图所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).