(本小题满分13分)设集合由满足下列两个条件的数列
构成:
① ②存在实数
,使
.(
为正整数)
(Ⅰ)在只有项的有限数列
,
中,其中
,
,
,
,
,
,
,
,
,
,试判断数列
,
是否为集合
的元素;
(Ⅱ)设是等差数列,
是其前
项和,
,
,证明数列
;并求出
的取值范围.
某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
已知椭圆C的两焦点分别为,长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度
以下茎叶图记录了甲,乙两组各四名同学的植树棵树,乙组记录中有一个数据模糊,无法确认,在图中以X表示。
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵树为19的概率.
已知命题p:方程表示焦点在
轴上的双曲线,命题q:f(x)=-(5-2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围
设O为坐标原点,点P的坐标(x-2,x-y).
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.